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INTRODUCTION

The equations for the stream functions of a steady, two-
dimensional flow of a compressible fluid, which are non-
linear when considered in the physical plane, become linear
when transformed to the hodograph plane, see Ref. 11. In
this latter plane, therefore, the principle of superposi-
tion can be applied. This, as well as the fact that the ho-
dograph method 1s more suitable for the determination of
pressure distribution on the boundary of the profile, sug-
gests that the hodograph method be used in developing pro-
cedures for the computation of steady, two-dimensional
flows.

The procedures for the computation of flow patterns by
use of the hodograph method, especially the transformation
back to the physical plane, require a very considerable
amount of numerical work even in the case of an lncompres-
sible fluid. Moreover, the problem of determining the com-
plex potential around a profile prescribed in the physical
plane leads to very complicated non-linear boundary condl-
tions when the hodograph method is used. There are at pres-
ent no methods avallable for solving this problem directly.
This makes it desirable to prepare tables based on the
principle of the hodograph method but yielding the image of
the streamlines directly in the physlcal plane. Thus the
mathematical simplicity of the hodograph method could be
exploited, and at the same time the bulk of the numerical
work inherent in its use could be avoided. In the present
paper a method for constructing such tables will be de-
scribed.

In order to illustrate the principle along which such
tables may be prepared, the preparation of the tables for

* Regearch paper done under Navy Contract NOrd 8555-Tagk F at Harvard
University. The ideas expressed in this paper represent the personal
view of the author and are not necessarily those of the Bureau of Ord-
nanceq




14 Bergman

an incompressible fluid will first be explained. By making
use of a correspondence principle introduced in Refs. 1, 3,
7, and 8, between incompressible and compressible flow,
this method will be extended to a compressible fluid. Then
two alternative methods will be discussed for setting up
the tables, and a sample will be presented, prepared ac-
cording to one of these. A numerical example illustrating
the use of the tables will then be given. Finally, the con-
ditions under which a given hodograph corresponds to a
physically possible flow pattern will be discussed.

The author wishes to thank Dr. Bernard Epstein for val-
uable suggestions and Mr. Maurice Neuman for help 1n the
preparation of the present paper.

NOTATION
a - local velocity of sound, dependent upon the speed of
the fluid
ao - velocity of sound at the stagnation point
k =~ ratio of isobaric to isovolumic specific heat
p - pressure
po - pressure at the stagnation point
q " - speed

X,y~- Carteslan coordinates in the physical plane

M - Mach numkber (M = g/a)

6 - angle subtended by the velocity vector with the x-axis
p - density

po - denslty at the stagnation point which wlll be taken

equal to 1
¢ - a constant in_ the pressure density relation (p==opk)
¢ - potential function
y - stream function

Whenever a function is expressed in terms of two sets of
variables obtained from each other by point transformations,
the same symbol wlill be retained for both functional forms.
Thus y(x,¥) =y (q,6) when x = x(q,6) and y = y(q,8).

In the present paper flow patterns will be considered
which are characterized by three different equations of

state:
(1) p
(2) ¢

(3) an approximate form of (2) for a simplified compres-
sible flow. (See the second section.)

po = const = 1 for an incompressible flow,

(p/o)l/k for an exact compressible flow,
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Quantities pertaining to incompressible flow w}ll be denot-
ed by letters capped with tildas, e.g., H, ¥, X(V); quanti-
ties pertaining to exact compressible flow will be denoted
by plain letters (except for superscripts), e.g., H,, X(Vh
those referring to simplified compressible flow by letters
with asterisks, e.g.,q:ﬁx*(v) etc.

ON TABLES FOR AN INCOMPRESSIBLE FLUID

A plane 1s introduced whose Cartesian coordinates are
the variables

7 =1%o(da/q) = log g (1)

and @ (see notation).
The complex potential . for a large class of symmetric ob-
stacles in these variables can be wrilitten in the form

g(3) = D, B,(5 - no)'"3/? (2)

v=0

with Z = f, + 18 and no the logarithm of the speed at infin-
ity. In the case of symmetric obstacles the b; 8 are purely
imaginary (see Ref. 10, § 4).

Remark: The representation (2) holds only in a circle
with origin at &= no and radius, the distance from N =10 to
the nearest slngularity. However, by employing suitable
summation methods, e.g., :

g(%) = 1im £ [b,/I(1+ sv)J[E-no]"“l/2 (2a)

S0

a representation is obtained for g(Z) in the largest doubly
covered star domain in which the function is regular. (For
details, see Ref. 12.) With the b}s purely lmaginary, the
stream function § can be wrltten

§ = Imlg(2)] = Z 15§ (V) (7,65 no)

=0

v (5,0;5%0) = Re[Z - ao]v-l/a
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The streamlines of the flow patterns corresponding to g(Z)
in the physical plane are given by

o]

x = 2 1, X0 (5, 0,n0), y=2 15,7 ) (5, 05m0)

v=o0 v=0 (4)

where

X0 (F, 05m0) = (1/poe™) {[-cos 6§{") - sin 6§(¥)]an
n
+ [cos e@é“) - sln emé“ﬁ aet (5a)
§(V)(ﬁ,ﬁ;no) =f(l/§oen°){[—sin GWGW) + cos GWSV)]dn
n

+ [sin e@é“> + cos eﬁé“)]de; (5b)
bss depend on the boundary curve of the profile. In employ~
ing the hodograph method in the incompressible fluld case,
it is convenient to prepare a set of tables for

PO (5,05m0), X (Fe5m0), T, 65m0) (6)

for a number of values of the parameter no. For, by using a
set of bys appropriate to the obstacle, ﬁ(ﬁ,e;no) could im-
mediately be determined by making use of Egs. (3) and (6).
To find the 1mage of a streamline

§(M,05n0) = s = const (7)

in the physical plane, a sufficlently dense set of points
(ﬁs,es) = 1,2,.4., 18 first found, corresponding to the
streamline §(#,6;n0) = s. From the tables values are read
for

() = x(v) (fgs0g3n0)5 vV = ?(v)(ﬁs’es5n°) (8)

and by using Eq. (4) the image §(x,y) = s of $(5,83n0) = 8
is found in the physical plane.

The essence of this method is the separation of the
quantities X(v), ¥(v), §(v) that are independent of the
profile from the b;s which depend on 1t. For the former, a
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set of tables can be prepared once and for all. The prob-
lem of determining the latter recurs wlth each profile.
This is a relatively simple matter in the case of lncom-
pressible flow. New variables n, 6 are introduced into the
complex potential g(Z) and an expansion is made about no.
The coefficlents of the expansion are the desired* {b,}. In
the compressible case the problem 1s much more involved,
but in most cases of interest the bbs found for the incom-
pressible case may be used in the compressible case as a
first approximation to the exact bJs. Methods are known for
improving on this approximation but this matter will not be
discussed 1n the present paper.

EXTENSION OF THE METHODS USED IN THE CASE OF AN
INCOMPRESSIBLE FLUID TO THE CASE OF A
COMPRESSIBLE FLUID

The complex potential for the incompressible fiuid flow
considered in the §,6 plane has (in general) singularities,
such as branch points, poles, etc. The procedures developed
for the treatment of this case make use of various proper-
ties of analytic functions defined on a Riemann surface.

The recently developed theory of the integral operators
permits the extensicn of these procedures to theory func-
tiong satisfying general partial differential equations, es-
peclally those satisfying the compressibility equation. (For
details see Refs. 3, 4, 5, 7, 8.) In particular, a corre-
spondence principle can be set up between the flow pattern
of an incompressible fluid around a profile 6, and that~of

a compressible fluld around a profile C, approximating C.

It is easiest to display this correspondence principle if
the equations for the compressible fluld case are trans-
formed to the "quasi logarithmic" plane defined by the Car-
teslan coordinates (n,6)

n(q) =n(a) =f%p(a)da/q] (9)
with the constant of integration so chosen that n(a) = Q%%

*Tor the construction of flow patterns of an Incompressible fluld
around a given profile by the use of the hodograph method, see Ref, 1b,
*#%* Tt 1g noted that in consldering purely subsonic flows in previous
pepers the variable

A =] ¢*1-¥7)dq,0
wes used and for purely supersonic flows the variable A= iA,6. In

gtudying transonic flow patterns it 1s found to be more convenient to
use the variables n,0.
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Thus n < 0 and r > O for the sub- and supersonic ranges,
respectively. In the incompressible case

n(a) =7 (a) = f*p(da/a) = S (da/q) (9a)

where the constant of integration i1s now so chosen that
f(q) = log q. The transition from (7,08) to (5,6) means only
a distortion in then direction. In thils coordinate system
the compressibility equation becomes

L(y) = 3%/on% + £(n)0%y/36% = 0 (10)
where

2(n) = [1 - M¥(n)1/p%(n)

See Ref. 3, Par.T.)

M is the local Mach number, M = g/a{q). (
p =po = 1 and Eq. (10)

For the incompressible case, M = O,
reduces to

Liy) = 32§/352 + 2% /362 = 0 (10a)

From the expression for &(n) it is seen that the equation
is elliptic in‘'the subsonic and hyperbolic in the supersonic
case.

By assuming an adiabatic pressure density relation
p = cpk and employing the Bernoulll equation, the following
explicit expression for a(q) and p{q) is found:

po {1l -[(k- 1)/2](q/a)2}1/(k'1)

p(a)
a?(q)

(See Ref. 1, p. 8-13.) Use of these formulas yields after a
lengthy computation the following expression for 4(n) (see
Ref. 9, appendix).

(11)
af(Q)f [(k-1)/2]1q%

2(n) = 2[2/(k+ 1)) (2=E)/Cer)y oy

- [(Bk+5)/(2k+2)] [2/(k+ 1) 17X/ "D ong i 1} (12)

Eq. (10) is now simplified by retaining only the linear term
in 5 of Eq. (12), i.e.,

£(n) = 4*(n) = Cn, €= -2[2/(k+1)] (2-x) /(e -2) (12a)
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and writing

4

O

L*(y) = 3% /3n% + Cnd®y/d6% = (10%)

Remark: Tricomi (see Ref. 15) was the first to study
Eq. (10*) extensively. Different authors subsequently con-
sidered it in connection with the theory of compressible
fluids. However, the present treatment is different from
the treatments given previously. The "correspondence prin-
ciple" is introduced and solutions of this equation defined
on a Riemann surface and possesslng singularities are con-
sidered. Eg. (10*) will henceforth be referred to as the
"simplified compressibility equation.”

The application of the operator method to the solutilon
of Eq. (10*) will now be described. Every analytic function
g of one complex varlable z = n + 16 can be written in the
form

glz) = m{£(z)] = [T*{flz(1-1t%)/2]/(1- tz)l/zgdt (1la)
with

£(z) = nlg(z)] = (2/x)1e(0) + z [T g'l2z(1- t*)]at}] (11b)
where g'(g) = dg(g)/dE . It has been shown in Ref. 9 that
for every equation of type (10%) it is possible to define
an operator p* acting on g(z) such that

u*(z) = p*[g(z)] = p* {m[f(z)]} = P*[£(z)] (13)

is a complex solution of Eq. (10*). The followlng are the
explicit expressions for P*[f(z)] and p*[g(z)]:

px[£(z)]

]

ST E(n,05m0)20(2/2) (1= €)1 [(at/ V1= 251 (14)

p*[e(z)] = Sol-n)"Y* {glz) +

+ Z(1/22™[r(en+ 1)/T(n+ 1)1 8%2)g ™) ()} (15)

THhis simplification is equivalent to replacing the exact pressure
density relation by an approximate one. It 1s possible to show that the
approximation to the exact equation of state is quite good in a certain
range, in particular around the transonic line,
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E*(n,63n0) may be taken as
E*(1,03m0) = So(-n)">/* #{1/6, 5/6, 1/2, t%lc(-n)*/?
+ 16 - n01/20(-n)3/2} (16)

where ¥(a,B,y,X) 1s the hypergeometric function, So and ¢
are numerical constants

So = 2(2k+1)/(sk—s)24/5 (k_Fl)(z-k)/(sk-e)

(17)
c = (23/2/3)[(k‘_1)/2](3k-6)/(6k—6)

The polynomials $(n)(z) are defined by the recursion formu-
la and initial conditions:

$fl) + 2F% = 0

<

(n+1) (n)

(2n+1)8, (z) +2%,,  +2F*$7(z) =0 (18)

p(n)(0) = 0

with F* = (5/36)(1/4c¢®)(-5)"°>
The functlons g[n](z) may be wriltten as

) e(t)at
(19)

z -
e Me) < [P T e az = 1)) Pt

The method of integral operators permlts setting up a
correspondence principle between the flow patterns of an in-
compressible and a compressible fluid. Both flulds are con-
sidered in the quasi logarithmic plane (which in the case
of an incompressible fluid reduces to the logarithmic plane).
The correspondence principle consists in associating with
the flow pattern y = Im[glof an incompressible fluid a flow
pattern y = Im [p*(g)] of a compressible fluid. By intro-
ducing expansion (2) for g(z) expressions are obtained for
a compressible fluid that are the analogues of Egs. (3),
(%), and (5) for an incompressible fluid. Thus

p*[g(2)] = £ bp*l(z-10)""*/2] (20)

where

D[ (2= o)’ /2 2 BY) [ px(2), p*(2)in010p*(2) - n ol (/2) (21)
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and
p* (z) = p*[n + 18] = —c(-n)3/2+ie = (22)
BOY) [p*(z),p*(2) 310) = BY) [4,85m0]
= So(-n)™*/* [ 1/6,5/6,v+1/2,(t-n0)/(-2¢) (-n)*/2]  (23)

It 1s seen then that in the case of the stream function the
transition from the incompressible to the compressible case
is made by multiplylng each term of its power serles expan-
sion by a "compressibllity factor" B(V)(C,C;no) and by re-
placing the variable z = 5 + 16 by the varlable
{ = -c(-n)s/2 + 10, This latter change implies a distor-
tion in the n dilrection mentioned above,

Corresponding to expression (3) of the incompressible
case, the stream function for a symmetric profile can be
written in the form

y(n,05m0) = X 1 byy{¥) (1,8;5m0) (24)
where

(v)

y = Re[B(v)(

£,Z5n0) (4= no)’ ~2/2] (25)

The implicit representation of the streamllne y(n,9;3n0) =5
in the physical plane i1s given by

x= £ 15, X (n,05m0), v = £ 1b, ¥ (n,05m0) (26)
with
x5 (/e asel VFEMy (w2 ) Y cose -y (Y stnolag
+ [(1- Mz)l/z(‘/_i*(n))-1v£:) cosé - wéV) sing]do} (27a)
s o5 ey ased VST e g )iz BT Y stne -y (Y cos s1ae

+ [(1-.M2)1/2( /-4*(n))"¢£”) sin @ + w;')cos 6lde} (27p)
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In order to evaluate the "compressibility factors"
B(V)(q,o;no), sultable power serles representations must be
found for the hypergeometric function appearing in Eq. (23).
It is well known that for | x| < 1, H(a,B,Y,x) may be repre-
sented by a hypergeometric serles F(a,f,Y,x) and for
|x| > 0 a combination of two hypergeometric series with
arguments and parameters different from those appearing in
the hypergeometric function must be used (see Ref. 16, § IV).
In the case of the hypergeometric function appearing in Eq.
(23), the boundary separating the domains of convergence,

I[-c(-n)/2 = no + 10] /T-2c(=)%/2]| = 1

-]
4

S, S} Sy s!!
H=-.035 H= 024 -

Fig. 1, Domains of Validity of the Power Series Representations
(28a) and (28b) for the Hypergeometric Function

1 5 1 'C(—TI)S/Z ~TNo + 16
¥ E’E’V+E’ )

~2c(-1)%/?
(4) 3757 + 6% + 20(-n)¥/% 50 + no°=0 15 <0
(B) 3c%n® - 82 - 2c(-n)3/2 6 - no® =0 g5 >0

In S1 = S + S and in Ss = S + S&, the representations

15,1 —°<-n)3/2-no+ie> (2 -2 "C('n)a/z-noﬁe)
HZ, +7 =Fl=7Z +5,
(6 6 2 '20<‘U)3/2 6’6 2 _20(-n)3/2

(28a)
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—c(—n)s/z- no + 16

15 1
H|=,= = =
6°6° + 2: -20(—7])8/2
A —?C(—n)a/z 1/6 F %’g -V :l: _20(_n)3/2 +
v 5 3/2 5 2 3/2
-2¢(-1)"/"= no +10 ~c(-1)7/%- no+16
B —20(—7])8/2 5/6 o __5_ _li v _5_ —20(—”)3/2
v L= 3>??
_gc(_n)a/z_ no +16 63 5 —c(-n)s/z- o+ 16
(28b)

are used respectively. The Aésand E%sdenote the quantities
Ay = r(-2/3)r(v + 1/2)/1(-1/3 - v)(5/6)
B, =I'(v +1/2)r(2/3)/1(1/3 -v)r(1/6)

v
TABLES FOR A COMPRESSIBLE FLUID

It has been shown in the previous section how it is pos-
sible to extend the methods used in the case of an incom-
pressible fluid to the case of a compressible one. The an-
alogues of Egs. (2), (3), (), and (5) of the incompressi-
ble flow were obtained, namedly Egs. (20), (25), (26), and
(27). These permit the setting up of tables for a compres-
sible fluld of the type that was outlined in the first sec-
tion for an incompressible fluid.

In this section two types of tables will be 1ndicated.
Type I depends upon a parameter no and has to be prepared
for a number of values of o, sayno,y(v =1, ... n). In
this case one must resort to interpolation methods in
order to obtain streamlines for intermediary values of
No : Nosy < 7o <TNosy+1. Tables of type II are independent
of any parameter but thelr application requires more numer-
ical work when used for a value of 1o, for which tables of
type I are available,

Type I. In the present section a table of w(“)(n,ﬂ;no)
for a specific value of no,No = .-,02 will be given. A table
is also included for

(M) (5,05-.02) = Imip*[(z - .02)
in view of possible later appllcations, and a conversion
table from the variable n to the local Mach number M, An 1l-
lustration of the use of these tables will be given in the
next section.

V—1/2J}
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TABLE I. VALUES OF THE FUNCTIONS o'’ (n, )

n 0 v = 0 v =1 vV =2 v =3 = 4 vV =5
-.050 0.5 1.876 .015 -.869 -.043 272 .025
1.0 1.003 .012 -2.049 -.103 2.457 .209
1.5 .802 .008 -2.983 -.161 8.419 157
-.045 0.5 1.859 .015 - .854 -.043 265 .02k
1.0 1.010 .010 -2.026 ~.101 2,40k 21k
1.5 .798 .008 -2.951 -.164 8.577 772
-.040 0.5 1.842 .016 -.838 -.0h2 .258 .023%
1.0 1.017 .010 -2.002 -.100 2.407 217
1.5 T9k4 .008 -2.920 -.165 8.696 .78k
-.035 0.5 1.825 .016 -.82% -.0k1 .252 .02%
1.0 1.024 .010 -1.979 -.099 2,362 .213%
1.5 .790 .008 -2.888 -.167 8.822 797
-.030 0.5 1.809 .016 -.809 -.0ko 245 .022
1.0 1.030 .010 -1.954 -.098 2.315 .208
1.5 .785 .008 -2.857 -.168 8.929 .808
-.025 0.5 1.790 .016 -.793 -.040 237 021
1.0 1.0%7 .010 -1.929 -.096 2.267 .20k
1.5 .781 .008 -2.825 -.170 9.115 .821
-.020 0.5 1.771 .016 -.778 -.0%9 .230 .021
1.0 1.0k .010 -1.905 -.095 2.221 .200
1.5 STTT .008 -2.794% -.171 9.252 .838
-0.015 0 9.669 0.157 0.002 —* —_ —
0.5 1.754 0.017 -0.763 -0.038 0.223 0.020
1.0 1.051 0.011 -1.88 -0.09% 2.173 0.196
1.5 0.805 0.007 -3.012 -0.156 8.27h 0.734
~-0.010 0 8.667 0.179 0.003 _ - —_
0.5 1.737 0.017 -0.748 -0.037 0.215 0.019
1.0 1.058 0.011 -1.857 -0.092 2.126 0.192
1.5 0.810 0.007 -3.,045 -0.157 8.139 0.721
-0.005 0 7.927 0.198 0.00k4 - —_ —
0.5 1.715 0.017 -0.732 -0.037 0.208 0.019
1.0 1.063 0.011 -1.8%0 -0.092 2.076 0.187
1.5 0.813 0.008 -3.071 -0.155 7.985 0.715
0.005 0 13.222 0.472 0.012 — — _
0.5 0.897 1.125 0.318 -0.359 0.072 0.102
1.0 0.551 1.406 -0.841 -1.761  0.872 1.963
1.5 0.416 1.604 -1.hgp bk 45h 3,350 11.146
0.010 0 11.839 0.516 0.013% — _ —
0.5 0.906 1.138 -0.310 -0.369 0.068 0.106
1.0 0.555 1.h17 -0.837 -1.785  0.847 2.014
1.5 0.408 1.615 1. h7h -k.522 3,479 11,384

* The dash indicates that the value 1g smaller than ,0005
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7 6 v = 0 v=1 v=2 v=>73 vV =h v =5
0.015 0 10.357 0.556 0.014 _* . —_
0.5 0.914 1.14%9 -0.302 ~0.379 0.064 0.110
1.0 0.557 1.4k23  -0.824 -1.811 0.819 2,058
1.5 0.hke2 1.622 -1.458 -4.583 3.406  11.600
0.020 0 10.296 0.599 0.017 —_ —_— —_—
0.5 0.922 1.161 -0.294 -0.388 0.059 0.113
1.0 0.561 1.43%  -0.813 -1.84k 0.79% 2.108
1.5 0.423% 1.63 -1.435 mann 3.3%3% 11.818
025 0.5 .93L 1.173 -.286 -.398 .055 117
1.0 .565 1.445  -0.802 -1.876 .769 2.159
1.5 JA26 1.639  -1.426 -l 704 3.260 12.032
.030 0.5 .Ohly 1.185 -.279 -.ho7 051 121
1.0 .569 1.454 -.790 -1.908 .T46 2.208
1.5 Le8 1.650 -1.411 -4 ,766 3.187 12.255
.035 0.5 LOhT 1.197 -.270 -y .0k6 125
1.0 572 1.464 =777 -1.939 .720 2.258
1.5 430 1.656 -1.395 -4 .827 3,113  12.47h
.040 0.5 .955 1.209 ~.263 - 27 .043 129
1.0 575 1.473 -.T765 -1.969 .695 2.308
1.5 ) 1.66k  -1.379 -4 .896 3,041  12.693
.045 0.5 964 1.220 -.255 =437 .038 .133
1.0 578 1.482 -.753 -2.000 670 2.359
1.5 L3k 1.66 -1.363 -4.933 2.968 12.918
.050 0.5 973 1.231 - 247 -6 .035 137
1.0 .582 1.491 -7k -2.031 645 2.410
1.5 423 1.671 -1.347 -5.009 2,896 13.1k2

* The dash indicates that the value 1s smaller than .0005
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TABLE II. THE VALUES OF FUNCTIONS w(v) (ns 8)
7 0 v=20 v=l v=2 V=3 V=4 V=25
-0.050 0.5 .017 668 .020 -.234  -,017 .069
1.0 012 1.688 .051 -2.299 -.162 2.686
1.5 .007 1.9%5 L0553 -5.697 -.281 1h.761
- .05 0.5 .017 gann .019 -.223 -.016 .065
1.0 .013% 1.706 .051 -2.260 ~-.153 2,619
1.5 .007 1.926 .05% -5.608  -.292 1k.517
-.0k0 0.5 L0L7 .619 .019 -.212  -.015 .062
1.0 .013 1.694 .051 -2.22h  -,156 2.56k4
1.5 .007 1.916 .053 -5.558 -.350 14 .268
-.035 0.5 .017 .593 .018 -.200 -.01k .058
1.0 .013 1.684% .051. 2,190 -.154 2.510
1.5 .007 1.907 .05k -5.488  -.385 14.019
-.030 0.5 .016 565 017 -.188 -.013 .05k
1.0 .013 1.673 .050 -2.154  -.151 2,453
1.5 .007 1.901 .054 -5.419  -.379 13.769
-.025 _0.5 .016 535 .016 -.180 -.012 .050
1.0 .013 1.662 .050 -2.117 -.148 2.3%95
1.5 .007 1.888 .055 -5.346 -.375 1%,513%
-.020 0.5 .016 .500 .015 -.161 -.011 .06
1.0 .01k 1.649 .0k9 -2.081 -.145 2.285
1.5 .007 1.879 L0554 -5.277 -.369 13.263
-0.015 0  9.517 0.478  0.013 — - —
0.5 0.042 1.317 0.039 -0.417 -0.029 0.117
1.0 0.013 1.641  0.047 -2.045 -0.143 2.281
1.5 0.007 1.840 0.052 -5.20% -0.357 13.000
~-0.010 0 10.416 0.446  0.011 — — __
1.5 0.043 1.303 0.039 -0.406 -0.028 0.112
1.0 0.013 1.629  0.049 -2.009 -0.141 2.222
1.5  0.007 1.860 0.054 -5.134 -0.358 12.732
-0.005 0 11.478 0.411  0.009 — _ —
0.5 0.04k4 1.289 0.038 -0.394% -0.027 0.107
1.0  0.01k 1.616 0.048 -1.970 -0.138 2,161
1.5  0.007 1.847  0.054 -5.050 =~0.352 12.470
0.005 0 -0.002 0.002 — —_ — —
0.5 -1.432 0.616 0.652 -0.154 -0.193 0.0332
1.0 -0.91k4 0.788 1.601 -0.868 -1.866 0.862
1.5 -0.700 0.908 2.739 -2.%323% -7.086 5.3%62
0.010 0 -0.001 — _ _— — _
0.5 -1.418 0.611 0.667 -0.148 -0.199 0.031
1.0 -0.909 0.78%  1.631 -0.852 -1.908 0.830
1.5 -0.687 0.904%  2.773 -2.288 -7.218 5.227

* The dash indicates that the value is smaller than .005,
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TABIE II. THE VALUES OF FUNCTIONS w(v) (n, 8) (Cont.)
7 ] V=20 v =1 v=2 v =3 vV o=k v=>5
0.015 0 -~0.002 — _ — —_— —
0.5 -1.403 0.60k4 0.679 -0.142 ~-0.205 0.027
1.0 -0.901 0.777 1.649 -0.831 -1.943 0.795
1.5  -0.696 0.900 2.800 -2.252 -7.377 5.091
0.020 0 -0.283% 0.007 -0.001 — — —
0.5 -1.386 0.597 0.692 -0.135 -0.211 0.024
1.0 -0.895 0.77% 1.672 -0.81k4 -1.983 0.765
1.5 -0.691 0.895 2.8220 -2.215 ~7.456 4,952
025 0.5  -1.371 .591 705 -.129 -.218 .022
1.0 -.890 .769 1.695 -.796 -2.023% 733
1.5 -.687 .891 2.854 -2.179 ~7.57k 4.815
030 0.5 =1.350 .585 .719 -.123% -.224 .019
1.0 -.884 768 1.716 -777 -2.067 .702
1.5 -.684 .889 2.882 -2.143 -7.694 4,678
.035 0.5 -1.340 578 731 -.117 -.230 .0L7
1.0 -.877 758 1.736 -.758 -2,108 670
1.5 -.680 .882 2.909 -2.106 -7.814 ) .540
040 0.5 -1.325 oyan STk -.111 - 237 .01k
1.0 -.871 .753 1.757 -.739 -2,149 .638
1.5 -.676 877 2.93%6 -2.067 ~7.933 b, kobé
.05 0.5 -1.309 565 157 ~.105 -,2h3 .011
1.0 -.864 .T48 1.778 -.721 -2,190 606
1.5 -.67% 877 2.96% -2.018 -8.054 4,271
050 0.5 -1.293 .558 7L .099 -.250 .009
1.0 -.858 LTh3 1.798 _.702 -2.231 575
1.5 -.678 871 2.990 -1.997 -8.175 4,135
* The dash indicates that the value is smaller than ,005,
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TABLE III

“onversion of M to np

M n M n
.60 -.1977 .96 -.0165
.62 -.1857 .98 -.0083
.64 -.1750 1.00 0
.66 -.1616 1.01 L0044
.68 -.1541 1.02 .0079
.70 -.1%07 1.03 .0120
72 -.1307 1.04 L0160
T4 -.1195 1.05 .0197
.76 -.1087 1.06 L0234
.78 -.0978 1.07 L0274
.80 -.0887 1.08 .0312
.82 -.0787 1.09 L0350
.84 -.0692 1.10 L0387
.86 -.0603 1.10 .0387
.88 -.0513

.90 -.0421

.92 -.0336

o4 -.0245

Type II. In preparing this type of table the values of
#(1/6, 5/6, v + 1/2, a + 1) are computed once and for all,
as well as 1ts derivative wilth respect to the argument for
a number of values of a and § where

% = 1/2 - no/l-20(-n)>/2) =6 /[-2c(-n)*/?]

By the use of tables of fractional powers and trigonometric
functions and the tables outlined above, the computation
can now be made,

(Y < RelSo(- 1M *T-c(- /2= 1o+ 1617/2 4(1/6,5/6,v+1/2, & + 1B)

and‘Pe(")(n,e;no): ‘PTsv)(T]’SET]O)-
The stream functions in the hodograph plane are obtained
by formingy (n,8;n0) = X ibv\y(v)(n,e;no). The inte-

of Egs. (27a) and (27b) are now evaluated by using the ta-
bles for the derivative of ¥(1/6, 5/y, v + 1/2, « + 1B).
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The transition to the physical plane is carried out by nu-
merical integration of Egs. (27a) and (27b).

Note. Since the integrands of Eq. (17) are perfect dif-
ferentials, the value of the integral is independent of the
path and it may conveniently be taken along a streamline.

Tables of Type IIL will not be glven in the present paper.

ILLUSTRATION OF THE USE OF THE TABLES

As in a previous paperlo the complex potential of an in-
compressible fluld flow around an elliptic profile is chos-
en as the analytic function g(z). As is well known, the
complex potentlal of an incompressible flow around a cilrcle
1s given in the physical plane (t plane) by the relation

w= ¢+ 1y = qo(t + R/t?) (29)

where qo 1s the dimensionless speed at infinity. The func-
tion
£ = (1/2)(t + 1/%) (30)

maps the exterior of the circle onto the exterior of the el-
lipse and therefore the function g(gE) = wl[t(£)] will repre-
sent the complex potential of an incompressible flow around
an ellipse in the physical plane. This potential when trans-
formed to the hodograph plane will furnish, upon expansion
about no, a set of {b,} for the incompressible case, which,
as a first approximation will also be used for the compres-
sible flow. (See the first section.)

This transformation 1s carried out as follows: The con-
jugate to the velocity vector q is given by

q = aw/aE= (aw/at)/(ak/at) = [(1/2)ao(1-R/4%)1/[(1/2)a0(1 - 1/t%)] (31)
or
t® = (g - aoR®)/(q - o) (32)

where qo is the veloclity at infinity.

Therefore,

wig[t(q)]1l= (l/E)qoi[(a_-quZ)/(i-qo)f/24-R2[(i-qo)/(i-qugﬂl/zi

(33)
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Since the complex potentlal in the logarithmlc plane 1s

needed, z 1s set = - 16 with 7= fqdq/q = log g and
No = log do. Thus is obtalned

a(z) = (1/2)Re(e °) {[(1-R"2e" "©)/(1-e °)1*/2

¢ 1=y ore o) R/ (34)

which can be developed in a power series of the form

g(z) = 2 by(z - no) "1/ (34a)

V=0

As an example, go 1s taken equal to 0.98 (or no=-0.02)
and RZ = 1.2, which yields a thickness ratio for the ellip-
tic profile of 11:1. With these numerical values for u and
R the set of {b,} listed in Table IV 1s obtained.

TABLE IV

The Series Coefficlents of Functilon g

v o] 1 2 3 b 5

b .240101 -2.100861 -L4.859411 -8.170151 -82.869231 -389.551

It is observed that the radius of convergence of this
series is | &- No |= log R® = .18 about the center &= No.
As was mentioned before, however, by employing suitable
summation methods, the seriles may be used outside 1ts do-
main of convergence (see the first section).

Using these values for {by} and the table of {W(V)}

yields the expression
vy= Z b,y )0, 6;-0.02)

which 1s equated to zero. If this 1s solved by a graphical
method, a number of polnts are obtained on the streamline

y(n,8; -0.02)= 0 (35)

(see Table V).
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TABLE V

Points on Streamline y(n,6;-.02) = 0

n o .032

0 o]

029 .025 .01k 0 -.0l4

.08 12k .151 170 .190

The next task is to obtain the image of this streamline
in the physical plane. To do this the values of {X(V)} and
= 0,1,...5, are found corresponding to the set
(n,8). (See Tables VI and VII.)

fy (v)3

(v)

Values of X'V

TABLE VI

(n,9;-0.02) for Points on Streamliney(n, 6;-0.02) = 0

.6 £ B @ 3w ()
.0%2 0 .26080 32965 02475 ,00034  .0000L 0
029 .08  -7.Lh056 -2.1967h 2.10610  .O9LL3 -.04773 -.00019
025 .12k L,18929 .92197 L5728 (13936 -.00931 00272
01k 151 3.5778%  3.41533  1.43748  .59867 -.15616 00155

0 .l70 .30167  -.04313% .02595  .00582 -.00119 -.00032

-0k .190  8.00948 -1.78920 -1.86983 - .hh60T .15081  .03738
TABLE VIT
Valvues of Y(v) (n,6; -02) for Points on Streamliney (n,8; -.02)=0
N 0 %o) gD gﬂ YU) YH) Yw)
.032 0 0 0 0 0 0 0
029 .08 A6713 0 -.17611 .16885 .00758 -.00383 -.00001
085 .12k .50218 Jd1k92 05700 L01737 -.00119 00034
01k 151 ,5h46S .51988  ,21895 09112 ~.02377  ,00025
0 170 .05173 -.00740  ,00LL5 .00100 -.00020 =-.00005
-0l .190 1.02992  -.22806 -.23916 -.05751 .01908  .OOL8L
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By forming the expressions

x = X ip, x)(n,8;-0.02)

v = Z iby, YV (n,8;-0.02)

]
@]

a set of points is obtained lying on the streamline y
in the physical plane (see Table VIII).

TABLE VIII

Points on the Streamliney (r,8; -.02) = 0 in the Physical FPlane

n 032 .029 .025 .01k 0 -.01k
e 0 .08 .12k 151 .70 .190
M 1.080 1.072 1.057 1.035 1 .969
x -2.71 -4.68  -10.71 -21.68 -21.78 -25.23
¥ .36k 4,204 3.454 1.59%4 1.574 1.08k4

Fig. 2 represents the streamline of the incompressible
flow §(x,¥y) = O, colnclding with the boundary curve of the
Y

/—_—- ) — 9» X

W — COMPRESSIBLE FLOW
¥ — INCOMPRESSIBLE FLOW

Fig, 2. Parts of the Streamlines y(x,¥y)=0,¥(x,y) = O about Oval-
shaped Obstacles C and C respectively.
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obstacle together with the streamline y(x,y) = O of the
compressible flow. In setting up the diagram, the two
streamlines were drawn in different scales in order to make
the terminal points of the two ovals coincide. The neigh-
borhood of the terminals of the ovals in the physical plane
corresponds to the neighborhood of low Mach numbers in the
hodograph plane. The streamline in these nelghborhoods in
the former plane is obtained by expanding X(V)(n,e;no) and
Y \V(5n,0;n0) 1n terms of the Mach number as a parameter of
smallness:

x M (n,05m0) = OV (F,05m0) + M XX, 8500) + ...

Y(V)(n,e;TIO) Y(v)(ﬁ’GSUO) + M Yl(v)(ﬁ:e.;no) L
where X(n,0;n0), Y(n,8;n0) are defined by Eqs. (52) and
(5b). Only the part of the streamline located in the upper
half of the physilcal plane has been plotted in the dlagram.
The part in the lower half 1s symmetric to it with respect
to the x-axis.

CONDITIONS UNDER WHICH A GIVEN HODOGRAPﬁ CORRESPONDS TO
A PHYSICALLY POSSIBLE FLOW PATTERN

In the considerations of the previous sections the ques-
tion was completely disregarded as to whether the flow pat-
tern obtained by this method is of physical significance.
Obviously, 1f the functlon y(x,y) is to yleld a flow pat-
tern around a closed profile in the physical plane, it 1s
necessary that

(a) the streamline y(x,y) = O (or a part of this stream-
line, in the present case the image of the lines ABA'B',
see Fig. 3) yleld a closed curve in the physical plane;

(b) that every point of the physical plane pe covered at
most once (that is, that the mapping unto the x,y-plane be
schlicht*),

The two conditions for the subsonic case will now be con-
sidered:

*TIt is remarked, however, that if the whole image In the x,y-plane
is not schlicht, the flow pattern obtained may nevertheless be of phys-~
tcal interest since in some instances it is required to determine flow
patterns covering only part of the x,y-plane or only a part of the flow
pattern obtalned 1s used,
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M,
/;i///"”—_—__
AK AI |
M

b

Fig, 3, The Streamline ¥ = O in the Hodograph and Physical Planes.

(a') The necessary and sufficlent conditions that the
boundary AB A!'B' when mapped by Eq. (26) unto the physical
plane yleld a closed curve in the latter plane have been es-
tablished 1n a previous paper for flow patterns that are not
necessarlly symmetric. (See Ref. 7.)

(b') The determinant of the mapping from the hodograph to
the physical plane 3(x,y)/d(u,v) is always positive. It is
therefore sufficient and necessary, in order that the . map-
ping be schlicht, that the boundary curve A1B; A{Bi be
schlicht, and that the mapping satlsfy certain regularity
conditions at infinlty, which wlill be stated presently.

In the case under consideration the schlichtness of the
boundary curve A;B;Ai1B] follows from the symmetry of the
Image in the hodograph plane and the fact that the hodograph
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lies in the half plane u > 0. Indeed, if the point P moves
along a line AMP, then the velocity component’u is always
positive, that 1ls, the x coordinate always increases. The
segment BNA' cannot intersect itself or the arc ANB, since
the coordinate still increases 1f the point P moves along
this curve. PFrom the symmetry properties 1t follows that
this arc lies in the upper half, and that the image of
A'N'B'A!', in the lower half of the xy- plane. The whole
boundary curve is then schlicht. The mapping must satisfy
the following conditions at infinlty: As a doubly covered
circle about the point O the image of infinity of the hodo-
graph plane shrinks to a point, its image in the l1nverted
physical plane [x' + 1y!' = 1/(x + iy)] must be schlicht
and also shrink to a point.

In generalizing these results to transonic flow patterns,
one must be on guard against the following difficultles:

(a) The functional determinant d(u,v)/d(x,y) is not nec-
essarily positive,

(b) The mixed character of the equation of flow may give
rise to hyperbolic singularities which do not appear in the
subsonic case.

The general character of mappings of this type has been
extensively investigated by Morse and others (see Ref. 13).
This problem will not be discussed in the present paper.
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